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1. Anistropic Crystals

A “heralded” source of single photons can be realized with spontaneous parametric down-
conversion, a non-linear optical effect in which a photon incident on a non-linear optical
crystal stimulates the emission of two new photons. The generated photon frequencies add
up to the frequency of the incident photon. This process is shown schematically in Figure
1 where ωp, the incident light (”pump” laser) spontaneously generates signal ωs and the
idler ωi photons. This effect is very weak at the milliwatt light power levels typically used
in this experiment, roughly one photon out of 1011 photons results in a conversion.

Figure 1. Spontaneous parametric down conversion

This process also satisfies momentum conservation in a scheme called phase matching
between the laser light and the downconverted light. Before discussing phase matching in
detail, it is instructive to consider light propagation in a uniaxial crystal, a class of optical
crystals which includes BBO. We will assume that our coordinates are aligned with the
crystal system such that

~D = ε ~E =

 εor 0 0
0 εor 0
0 0 εex

 ~E

where εor is the ordinary dielectric constant and εex is the extraordinary dielectric constant.
The optic axis points along the z-axis, which corresponds to the axis where propagation is
independent of polarization (that is, εx = εy = εor).
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Herein, ε is assumed to be a matrix. In addition, assuming a non-magnetic material,
µ = µ0, Maxwel’s equations combine to give

∇×∇× ~E = −µ0ε
∂2 ~E

∂t2

Assume plane waves of the form

~E(~r, t) = ~E0e
i(~k·~r−ωt) =

(
Exî+ Ey ĵ + Ezk̂

)
ei(
~k·~r−ωt)

where ~E0 is a constant vector with components Ex, Ey, and Ez, and the direction of

propagation is parallel to ~k = kxî+ ky ĵ + kzk̂.

This is a valid solution if ~k and ω satisfy the dispersion relation given by Maxwell’s wave
equation,

−~k × ~k × ~E0 = k2 ~E0 − ~k(~k · ~E0) = µ0ω
2ε ~E0

Since the crystal is anisotropic, we cannot assume ~k · ~E0 = 0 in all cases, which leaves us
with the following three equations, one from each vector component

k2Ex − kx(~k · ~E0) = µ0ω
2εorEx

k2Ey − ky(~k · ~E0) = µ0ω
2εorEy

k2Ez − kz(~k · ~E0) = µ0ω
2εexEz

We can solve for each component of ~E0 in terms of ~k · ~E0,

(1) Ex =
kx(~k · ~E0)

k2 − µ0ω2εor
Ey =

ky(~k · ~E0)

k2 − µ0ω2εor
Ez =

kz(~k · ~E0)

k2 − µ0ω2εex

Combine these to form the dot product ~k · ~E

kxEx + kyEy + kzEz =
k2x(~k · ~E0)

k2 − µ0ω2εor
+

k2y(
~k · ~E0)

k2 − µ0ω2εor
+

k2z(
~k · ~E0)

k2 − µ0ω2εex

We can derive a dispersion relation by canceling the common factor ~k · ~E. However, keep

in mind that a second solution simply satisfies ~k · ~E = 0, which is called the ordinary
wave (more about this later). For now, consider the extraordinary wave solution where
~k · ~E 6= 0,
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1 =
k2x

k2 − µ0ω2εor
+

k2y
k2 − µ0ω2εor

+
k2z

k2 − µ0ω2εex

It is convenient to write the components of ~k in spherical coordinates with polar angle θ
and azimuth φ, kx = k sin θ cosφ, ky = k sin θ sinφ and kz = k cos θ, where the magnitude∣∣∣~k∣∣∣ ≡ k = ωn/c.

Figure 2. Propagation direction in spherical coordinates

We will also need the definitions for the ordinary refractive index µ0εor = (nor/c)
2 and

the extraordinary µ0εex = (nex/c)
2. It is convenient to define the terms kor = ωnor/c and

kex = ωnex/c. Putting these forms of k into the dispersion relation results in

1 =
k2 sin2 θ

k2 − k2or
+
k2 cos2 θ

k2 − k2ex

A little more algebra gives the solution for k2(θ),

(2) k2(θ) =
k2ork

2
ex

k2or sin2 θ + k2ex cos2 θ

or in the same form as presented in Galvez, et al [1]

(3) n2(θ) =
n2orn

2
ex

n2or sin2 θ + n2ex cos2 θ
=

1

(sin θ/nex)2 + (cos θ/nor)
2

As mentioned, this solution gives the index for the extraordinary wave and corresponds to
an electric field pointing in the k-z plane. There is another solution for plane waves, called
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the ordinary wave, where n = nor and the electric field points in the x-y plane. This can

be shown by analyzing the components of ~E, which is done as an appendix.

In summary, for a given direction of propagation, there are two polarizations and corre-
sponding refractive index values.

Figure 3. Ordinary and extraordinary polarizations.

The ordinary wave is polarized in the x-y plane and has refractive index nor. The extraor-
dinary wave is polarized in the k-z plane and has a refractive index given by (3).

2. Phase matching

Parametric downconversion is typically characterized by the wave-mixing relation (energy
conservation)

~ωp = ~ωi + ~ωs,
ωp = ωi + ωs

where ωp is the angular frequency of the incident beam, which is referred to as the pump,
and ωi and ωs are the angular frequencies of the signal and idler beams. The phase matching
condition is

(4) ~kp = ~ki + ~ks

where ∣∣∣~kp∣∣∣ =
np(ωp)ωp

c

∣∣∣~ki∣∣∣ =
ni(ωi)ωi

c

∣∣∣~ks∣∣∣ =
ns(ωs)ωs

c

and the refractive index values depend on frequency and polarization. These two relations,
energy and momentum conservation, cannot in general be satisfied in isotropic materials
due to normal dispersion. In particular, the refractive index increases with frequency so
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that n(ωp) > n(ωs) and n(ωp) > n(ωi). The combined momentum of the signal and idler
is always less than the momentum of the pump.

In the last section, we showed how light propagation in a birefringent crystal exhibits a
polarization dependent refractive index. This can be used to compensate for the natural
dispersion and achieve phase matching. In the case of BBO, beta-barium-borate, the
refractive index values depend on wavelength according to a phenomenological Sellmeier
equation

(5) n(λ) =

√
A+

B

λ2 + C
+Dλ2

where the coefficients for the ordinary and extraordinary refractive index are measured
[2]

n A B(µm2) C(µm2) D(µm −2 )
nor 2.7359 0.01878 -0.01822 -0.01354
nex 2.3753 0.01224 -0.01667 -0.01516

Figure 4 shows a Mathematica plot of nor(λ) and nex(λ) for BBO

Figure 4. Ordinary and extraordinary refractive index plots for BBO as
a function of light wavelenth.
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At any given wavelength, the ordinary wave propagates with a larger refractive index than
the extraordinary nor > nex (unless θ = 0, then they are the same). Phase matching
can be achieved if the signal and idler waves are polarized along the y-axis, with refrac-
tive index values nor,λ=0.810µm = 1.66026 and the pump beam is polarized in the x-z
plane with refractive index varying according to (3) between nor,λ=0.405µm = 1.69189 and
nex,λ=0.405µm = 1.56712. This configuration, where the signal and idler waves have the
same polarization and are perpendicular to the pump polarization, is called Type I phase
matching.

The Figure 5 shows Type I geometry for propagation in the x-z plane (φ = 0) at an angle
θ to the z-optical axis. The y-axis points out of the page and polarization vectors are
represented by dots. Two cases of Type I phase matching are calculated, collinear and
non-collinear.

Collinear phase matching requires that n(θ)λ=0.405µm = nor,λ=0.810µm with the result (using
the same Mathematica functions as in Figure 4)

FindRoot[neth[θ, 0.405] = = nor[0.810], {θ, .5}]

{θ → 0.502932 }

or θcoll = 28.8◦.

Figure 5. Type I phase matching geometry for collinear and non-collinear
parametric generation. In non-collinear phase matching, the angle between
the signal or idler propagation and the pump propagation is taken to be 3◦

.

The non-collinear geometry used in the single photon labs has an angle of 3◦ between
each of the downconverted beams and the pump beam. This adds a cos 3◦ factor to the
expression for phase matching,∣∣∣~kp∣∣∣ =

∣∣∣~ks∣∣∣ cos 3◦ +
∣∣∣~ki∣∣∣ cos 3◦ =⇒ n(θ)pωp = cos 3◦ns

1

2
ωp + cos 3◦ni

1

2
ωp
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where it is assumed that ωs = ωi = ωp/2. This gives a slightly larger phase matching
angle,

FindRoot[neth[θ, 0.405] = = Cos[ 3 Pi / 180] nor[0.810], {θ, .5}]

{θ → 0.523076 }

or θnoncoll = 30.0◦. This is slightly larger than the value given in [3], perhaps the refractive
index values are slightly different than Kato reports in [2].

3. Appendix: Field calculations

First, the math is clearer if we choose to propagate in the x-z plane. Since there is symmetry
in x-y, there is no loss of generality if we choose our coordinates such that ky = 0.

Figure 6. Propagation direction in spherical coordinates

Consider the extraordinary wave with solution for k given by (2), which assumes that
~k · ~E 6= 0. The field equations given in (1) are

Ex =
kx(~k · ~E0)

k2 − k2or
=

k sin θ(~k · ~E0)

k2(1− k2or/k2)
=

sin θ(~k · ~E0)

k(1− k2or((cos θ/kor)2 + (sin θ/kex)2))

=
sin θ(~k · ~E0)

k(1− cos2 θ − k2or sin2 θ/k2ex)
=
~k · ~E0

k sin θ

k2ex
k2ex − k2or

Ey =
ky(~k · ~E0)

k2 − k2or
= 0

and

Ez =
kz(~k · ~E0)

k2 − k2ex
=
~k · ~E0

k cos θ

k2or
k2or − k2ex

Clearly, the field is polarized in the x-z plane (also the k-z plane as mentioned earlier) and
the ratio of field components is

Ex
Ez

= −k
2
ex cos θ

k2or sin θ
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The ordinary wave is where ~k · ~E = kxEx + kzEz = 0 and the only non trivial solution is
where Ex = Ez = 0, Ey 6= 0, and k = kor .
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